129 research outputs found

    The impact of agricultural irrigation on land surface characteristics and near surface climate in China

    Get PDF
    It is well known that land cover and land use change can significantly influence the climate system by modulating surface-atmosphere exchanges. Land management, such as irrigation, also has a profound influence on the climate system. Irrigation can alter the water and energy flux from ground surface to the atmosphere and further influence near surface climate. Considering its dramatic expansion during the last century, the widespread use of irrigation has had an ongoing impact on our climate system. However, until now, this relationship between increased irrigation and its effect on climate system has not been well examined. The main objective of this dissertation is to quantify the irrigation impacts on land surface characteristics and near surface climate over China by using both observational (remote sensing and meteorological observation) and modeling studies with four specific questions: Where are the irrigated areas in China? What might have happened in the past? What will happen as a result of irrigation expansion in the future? And what is the relationship between the land cover land use change (LCLUC) impact and the irrigation impact on near surface climate in China? To answer these questions, I 1) developed three irrigation potential indices and produced a high resolution irrigation map of China; 2)analyzed and compared meteorological and remote sensing observations in irrigated and non-irrigated agriculture areas of China; 3) simulated both irrigation and LCLUC impact on land surface energy balance components (i.e., land surface temperature, latent flux, and sensible flux) and near surface climate (i.e., air temperature, water vapor, relative humidity) of China in the past (1978-2004) and also in two future time periods (2050 and 2100) by using the Community Land Model and compared the impact of irrigation with that of LUCC. Meteorological observations in Jilin Province show that the temperature differences between highly and lightly irrigated areas are statistically significant. The differences are highly correlated with the effective irrigation area (EIA) and sown area of crop (CSA). Results from satellite observations show that highly irrigated areas corresponded to lower albedo and daytime land surface temperature (LST), and higher normalized difference vegetation index (NDVI) and evapotranspiration (ET). The difference between highly and lightly irrigated areas is bigger in drier areas and in drier years. The modeling studies show that the irrigation impact on temperature is much less in the future than in the 20th century and that irrigation impacts more on the maximum air temperature than on the minimum air temperature. Both contemporary and future irrigation simulations show, nationally, irrigation decreases daily maximum temperature (Tmax) but increase daily minimum temperature (Tmin). Daily mean temperature (Tmean) decreases in contemporary irrigation simulations but increases in most of the cases in future irrigation simulations. In the 20th century, nationally, the spray irrigation leads to a decrease in Tmax of 0.079K and an increase in Tmin of 0.022K. Nationally, the spray irrigation leads to a decrease in Tmax between 0.022K and 0.045K and an increase in Tmin between 0.019K and 0.057K under future scenarios. This study demonstrates that the irrigation patterns (flood irrigation and spray irrigation) have statistically significant impacts on local climate. Moreover, this study suggests that, in the national respective, the impacts of changes in land management on climate are not comparable to the impacts of changes in land cover land use. This dissertation on irrigation and its impact is the first study which focuses solely on China using observational and modeling methods. The results from this dissertation contribute to a better understanding of the irrigation impact on near-surface climate which can improve our knowledge of how human activities influence climate, guide future policies aimed at mitigating or adapting to climate change, and help design a precise model to project the impact of irrigation on the climate system and irrigation requirements in the future. It can also be useful in assessing future food and water security issues

    Identification and characterization of two critical sequences in SV40PolyA that activate the green fluorescent protein reporter gene

    Get PDF
    Alu repeats or Line-1-ORF2 (ORF2) inhibit expression of the green fluorescent protein (GFP) gene when inserted downstream of this gene in the vector pEGFP-C1. In this work, we studied cis-acting elements that eliminated the repression of GFP gene expression induced by Alu and ORF2 and sequence characteristics of these elements. We found that sense and antisense PolyA of simian virus 40 (SV40PolyA, 240 bp) eliminated the repression of GFP gene expression when inserted between the GFP gene and the Alu (283 bp) repeats or ORF2 (3825 bp) in pAlu14 (14 tandem Alu repeats were inserted downstream of the GFP gene in the vector pEGFP-C1) or pORF2. Antisense SV40PolyA (PolyAas) induced stronger gene expression than its sense orientation (PolyA). Of four 60-bp segments of PolyAas (1F1R, 2F2R, 3F3R and 4F4R) inserted independently into pAlu14, only two (2F2R and 3F3R) eliminated the inhibition of GFP gene expression induced by Alu repeats. Deletion analysis revealed that a 17 nucleotide AT repeat (17ntAT; 5′-AAAAAAATGCTTTATTT-3′) in 2F2R and the fragment 3F38d9 (5′-ATAAACAAGTTAACAACA ACAATTGCATT-3′) in 3F3R were critical sequences for activating the GFP gene. Sequence and structural analyses showed that 17ntAT and 3F38d9 included imperfect palindromes and may form a variety of unstable stem-loops. We suggest that the presence of imperfect palindromes and unstable stem-loops in DNA enhancer elements plays an important role in GFP gene activation

    Finite-temperature violation of the anomalous transverse Wiedemann-Franz law

    Full text link
    The Wiedemann-Franz (WF) law links the ratio of electronic charge and heat conductivity to fundamental constants. It has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport, which represents the topological nature of the wave function, remains an open question. Here we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3_{3}Ge extended from room temperature down to sub-Kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K, but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature, rather than the inelastic scattering as observed in ordinary metals. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The accuracy of the experiment is supported by the verification of the Bridgman relation between the anomalous Ettingshausen and Nernst effects. Our results identify the anomalous Lorenz ratio as an extremely sensitive probe of Berry spectrum near the chemical potential.Comment: 9 pages,6 figures, Supplemental Material include

    Collaborative Camouflaged Object Detection: A Large-Scale Dataset and Benchmark

    Full text link
    In this paper, we provide a comprehensive study on a new task called collaborative camouflaged object detection (CoCOD), which aims to simultaneously detect camouflaged objects with the same properties from a group of relevant images. To this end, we meticulously construct the first large-scale dataset, termed CoCOD8K, which consists of 8,528 high-quality and elaborately selected images with object mask annotations, covering 5 superclasses and 70 subclasses. The dataset spans a wide range of natural and artificial camouflage scenes with diverse object appearances and backgrounds, making it a very challenging dataset for CoCOD. Besides, we propose the first baseline model for CoCOD, named bilateral-branch network (BBNet), which explores and aggregates co-camouflaged cues within a single image and between images within a group, respectively, for accurate camouflaged object detection in given images. This is implemented by an inter-image collaborative feature exploration (CFE) module, an intra-image object feature search (OFS) module, and a local-global refinement (LGR) module. We benchmark 18 state-of-the-art models, including 12 COD algorithms and 6 CoSOD algorithms, on the proposed CoCOD8K dataset under 5 widely used evaluation metrics. Extensive experiments demonstrate the effectiveness of the proposed method and the significantly superior performance compared to other competitors. We hope that our proposed dataset and model will boost growth in the COD community. The dataset, model, and results will be available at: https://github.com/zc199823/BBNet--CoCOD.Comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems (TNNLS

    Influence of isoniazid on T lymphocytes, cytokines, and macrophages in rats

    Get PDF
    T lymphocytes, cytokines, and macrophages play important roles in the clearance of Mycobacterium tuberculosis (Mtb) by the immune system. This study aimed to investigate the effects of isoniazid on the functions of both innate and adaptive immune cells. Healthy rats were randomly divided into experimental and control groups. Each group was randomly divided into three subgroups and named according to the duration of drug feeding, 1, 3, and 3 months followed by drug withdrawal for 1 month. The experimental groups were fed with isoniazid (12 mg/mL) and the control groups with normal saline. The percentage of CD4+ and CD8+ T lymphocytes, level of interleukin (IL)-12 and interferon (IFN)-Îł, and function of macrophages were determined at these three time points. Isoniazid significantly increased the percentage of CD4+ T lymphocytes and the CD4+/CD8+ T lymphocyte cell ratio (P < 0.05). It transiently (<1 month) enhanced the functions of rat macrophages significantly (P < 0.05). In summary, isoniazid could increase the percentage of CD4+ T lymphocytes, CD4+/CD8+ T lymphocyte cell ratio, and enhance macrophage function in healthy rats

    Monolayer Excitonic Laser

    Full text link
    Recently, two-dimensional (2D) materials have opened a new paradigm for fundamental physics explorations and device applications. Unlike gapless graphene, monolayer transition metal dichalcogenide (TMDC) has new optical functionalities for next generation ultra-compact electronic and opto-electronic devices. When TMDC crystals are thinned down to monolayers, they undergo an indirect to direct bandgap transition, making it an outstanding 2D semiconductor. Unique electron valley degree of freedom, strong light matter interactions and excitonic effects were observed. Enhancement of spontaneous emission has been reported on TMDC monolayers integrated with photonic crystal and distributed Bragg reflector microcavities. However, the coherent light emission from 2D monolayer TMDC has not been demonstrated, mainly due to that an atomic membrane has limited material gain volume and is lack of optical mode confinement. Here, we report the first realization of 2D excitonic laser by embedding monolayer tungsten disulfide (WS2) in a microdisk resonator. Using a whispering gallery mode (WGM) resonator with a high quality factor and optical confinement, we observed bright excitonic lasing in visible wavelength. The Si3N4/WS2/HSQ sandwich configuration provides a strong feedback and mode overlap with monolayer gain. This demonstration of 2D excitonic laser marks a major step towards 2D on-chip optoelectronics for high performance optical communication and computing applications.Comment: 15 pages, 4 figure

    Isolation and characterization of 28 polymorphic microsatellite loci in black carp (Mylopharyngodon piceus)

    Get PDF
    This study reports the isolation and characterization of 28 polymorphic microsatellite loci developed from black carp (Mylopharyngodon piceus), which is an important freshwater fish in China. The polymorphism was assessed with 32 individuals. Results showed that the numbers of loci alleles ranged from 2 to 19, and the values of observed and expected heterozygosities were from 0.2609 to 1.0000 and from 0.2417 to 0.9385, respectively. These markers are potentially useful for black carp population genetics analysis.This study reports the isolation and characterization of 28 polymorphic microsatellite loci developed from black carp (Mylopharyngodon piceus), which is an important freshwater fish in China. The polymorphism was assessed with 32 individuals. Results showed that the numbers of loci alleles ranged from 2 to 19, and the values of observed and expected heterozygosities were from 0.2609 to 1.0000 and from 0.2417 to 0.9385, respectively. These markers are potentially useful for black carp population genetics analysis

    Haploinsufficiency of A20 in a Chinese child caused by loss-of-function mutations in TNFAIP3: A case report and review of the literature

    Get PDF
    Case PresentationA 3-year-and-6-month-old child was reported to have recurrent high fever with generalized lymph node enlargement and significant elevation of inflammatory markers such as C-reactive protein and procalcitonin in tests. Later, whole exome sequencing determined that the child's disease was haploinsufficiency of A20 (HA20).ResultsAfter immunosuppressive therapy, the child's symptoms improved significantly, and the inflammatory markers dropped to the normal range.ConclusionBecause of the characteristics of HA20, this disease is often underdiagnosed and misdiagnosed in clinical practice. By reporting this case of HA20 in a child, we hope to increase the awareness of this disease in the clinic

    Monitoring of deforestation events in the tropics using multidimensional features of Sentinel 1 radar data

    Get PDF
    Many countries and regions are currently developing new forest strategies to better address the challenges facing forest ecosystems. Timely and accurate monitoring of deforestation events is necessary to guide tropical forest management activities. Synthetic aperture radar (SAR) is less susceptible to weather conditions and plays an important role in high-frequency monitoring in cloudy regions. Currently, most SAR image-based deforestation identification uses manually supervised methods, which rely on high quality and sufficient samples. In this study, we aim to explore radar features that are sensitive to deforestation, focusing on developing a method (named 3DC) to automatically extract deforestation events using radar multidimensional features. First, we analyzed the effectiveness of radar backscatter intensity (BI), vegetation index (VI), and polarization feature (PF) in distinguishing deforestation areas from the background environment. Second, we selected the best-performing radar features to construct a multidimensional feature space model and used an unsupervised K-mean clustering method to identify deforestation areas. Finally, qualitative and quantitative methods were used to validate the performance of the proposed method. The results in Paraguay, Brazil, and Mexico showed that (1) the overall accuracy (OA) and F1 score (F1) of 3DC were 88.1–98.3% and 90.2–98.5%, respectively. (2) 3DC achieved similar accuracy to supervised methods without the need for samples. (3) 3DC matched well with Global Forest Change (GFC) maps and provided more detailed spatial information. Furthermore, we applied the 3DC to deforestation mapping in Paraguay and found that deforestation events occurred mainly in the second half of the year. To conclude, 3DC is a simple and efficient method for monitoring tropical deforestation events, which is expected to serve the restoration of forests after deforestation. This study is also valuable for the development and implementation of forest management policies in the tropics
    • …
    corecore